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Planting time, first-year mowing, and seed mix design
influence ecological outcomes in agroecosystem
revegetation projects

Alec J. Glidden!>**®, Mark E. Sherrard’, Justin C. Meissen! ©, Mark C. Myers?,
Kenneth J. Elgersma?, Laura L. Jackson'*

The conversion of tallgrass prairie to agriculture has negatively affected provisioning of ecosystem services. Successful restora-
tion of ecosystem services could depend on management decisions applied during revegetation projects. We examined the
effects of three management decisions (seed mix design, planting time, and first-year mowing) on targeted ecosystem services
(erosion control, weed resistance, and pollinator resources). We tested three seed mixes of varying diversity and grass-to-forb
seeding ratios: Economy mix (21 species, 3:1 grass:forb), Pollinator mix (38 species, 1:3), and Diversity mix (71 species, 1:1). We
established plots at two planting times (dormant-season and spring) with or without first-year mowing. To assess ecosystem ser-
vices, we measured stem density, canopy cover, and floral density and richness of sown species in the second year after planting.
The Economy mix had the highest stem density and cover but lowest floral density and richness. The Pollinator mix had the
lowest stem density and cover but highest floral density. The Diversity mix had comparable stem density and cover to the Econ-
omy mix and comparable floral density and richness to the Pollinator mix. Mowing accelerated native plant establishment in all
seed mixes. Dormant-season planting improved establishment of spring and fall forbs and favored cool-season graminoids over
warm-season grasses. All three management decisions influenced ecosystem outcomes, and comparison to a previous study
revealed these effects to be robust to variation in site and climatic conditions. We recommend a diverse, balanced seed mix
design, first-year mowing, and dormant-season planting to improve multifunctionality of conservation projects.
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ecosystem services (e.g., water quality protection, flood control,
carbon sequestration, wildlife habitat, pollinator habitat)
* Seed mix design is a strong determinant of ecological out- (Wright & Wimberly 2013). To restore these ecosystem services
comes, and a diverse, grass-to-forb balanced seed mix can to the agricultural landscape, various state and federal agencies
enhance multiple ecosystem services in the agricultural and conservation organizations have developed targeted pro-

. };‘;Id;(;igfﬁg frequently during the first year of establish- grams t9 address speciﬁc. conservation challenges. With over
T, GO BT G S 0 G i 20 'mllhon acres (8 million hecFares) currently enrolled, the
e Unlted States Department of' Agrlculture’§ (USDA) Conserva-

e Dormant-season planting is a no-cost strategy that may tion Reseljve I_Dr(,)gra,m (CRI_D) is a globally s%gmﬁcant, large-sca.lle
conservation initiative. This program provides landowners with

improve the provisioning of pollinator resources by ) . .
favoring establishment of spring and fall forbs and reduc- cost-share and/or rental payments to temporarily retire environ-
mentally sensitive lands from agricultural production and

ing establishment of competitive warm-season grasses.
e Improving early establishment outcomes using best man-
agement practices identified in this study can substan- Author contributions: LLJ, JCM obtained funding for the research; AJG, JCM
. . cp e . o o 5 performed the field experiments, AJG, JCM, KJE, MES, MCM analyzed the data; AJG,
tially increase lifetime ecosystem service provision in

MES, MCM wrote; all authors edited the manuscript.
short-lived agroecosystem revegetation projects.
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The conversion of tallgrass prairie to agriculture in the Midwest- anaca
ern United States and the subsequent intensification of agricul- © 2022 Society for Ecological Restoration.
tural production in the region has resulted in extensive habitat doi: 10.1111/rec. 13818
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Management decisions affect conservation outcomes

implement a conservation practice involving revegetation. Two
prominent CRP conservation practices in the Midwestern
United States are CP25, which is designed to reduce soil erosion
and provide habitat for declining wildlife species, and CP42,
which is designed to enhance pollinator habitat (USDA 2021).
To ensure that conservation initiatives produce their intended
ecosystem services at a high-level and in a consistent manner,
we need to better understand how management decisions influ-
ence ecological outcomes in revegetation projects (e.g., Larson
etal. 2011, 2017; Grman et al. 2013). Seed mix design, the sea-
sonal timing of planting, and first-year mowing are three man-
agement variables likely to affect outcomes in grassland
revegetation projects.

Seed mix design is one of the most significant determinants of
ecological outcomes in revegetation projects involving native
grass and forb species (Grman et al. 2013). A key aspect of seed
mix design is the grass-to-forb seeding ratio. Seed mixes with
high grass-to-forb seeding ratios typically produce dense,
grass-dominated stands. These stands are well suited for conser-
vation projects striving to prevent soil erosion, minimize nutri-
ent loss, and enhance water quality but poorly suited for
projects striving to enhance pollinator habitat. Forbs establish
poorly and often do not persist in grass-dominated stands
(Dickson & Busby 2009; McCain et al. 2010; Torok
et al. 2010). Conversely, seed mixes with low grass-to-forb
seeding ratios typically produce higher quality pollinator habitat
than grass-dominated stands but are also less dense, more prone
to weed invasion (Middleton et al. 2010; Carter & Blair 2012;
Nemec et al. 2013), and provide less protection against soil ero-
sion and water quality degradation (Boyd 1942; Ellison 1950;
Burke & Grime 1996). Seed mixes with balanced (1:1)
grass-to-forb seeding ratios have the potential to be more
multifunctional, providing erosion control and weed resistance
comparable to grass-dominated seed mixes and pollinator
habitat quality comparable to forb-dominated seed mixes
(Meissen et al. 2020).

The seasonal timing of planting is another management deci-
sion that could influence outcomes in conservation projects.
Most revegetation projects in the Midwestern United States
involve planting in spring or in late fall when the vegetation is
dormant, and many CRP contracts are implemented with spring
planting because of various logistical obstacles involved in man-
agement (e.g., weather, seed availability, equipment availabil-
ity). However, dormant-season planting may be ecologically
preferable to spring planting because it allows seeds to experi-
ence freeze—thaw cycles, increases seed to soil contact, and bet-
ter mimics natural stratification and germination conditions
(Rowe 2010), resulting in higher forb establishment compared
to spring planting, which favors Cy-grass establishment
(Larson et al. 2011). Forb establishment rates are typically low
in prairie restoration projects (Smith et al. 2010; Williams
et al. 2010) and many species require specific environmental
cues to germinate successfully (Chambers & MacMahon 1994).
Species that fail to germinate in their first growing season are
susceptible to predation and fungal attacks until they receive
the proper germination cue (Clark & Wilson 2003). This may
explain why approximately one third of species fail to establish

in CRP conservation projects (Hillhouse & Zedler 2011). Many
of the forb species commonly used in native prairie revegetation
projects have seed that is expensive to produce (Smith
et al. 2010), and seeds that fail to recruit as plants contribute to
poor cost-effectiveness. Dormant-season planting could be a
no-cost strategy for improving forb establishment in conserva-
tion projects.

First-year mowing is another management decision that could
influence outcomes in conservation projects. Fast-growing
annual weeds are a common problem in revegetation projects
implemented on high-nutrient, post-agricultural lands
(Rothrock & Squiers 2003). Annual weeds can quickly form a
dense canopy and restrict light to developing native seedlings.
First-year mowing increases light availability and reduces
competition for native seedlings (Copeland et al. 2002;
MacDougall & Turkington 2007; Williams et al. 2007), which
can promote forb establishment (Williams et al. 2007; Rowe 2010),
increase native species richness (Meissen et al. 2020), increase
floral resources (Endels et al. 2007; Meissen et al. 2020) and
reduce invasion (Smith et al. 2018). Nevertheless, a survey of
38 experts revealed that only 60-65% of practitioners mow
during the early years of a tallgrass prairie restoration (Rowe
2010). Because CRP contracts typically last only 10-15 years, it
is imperative that native plants establish quickly to realize the max-
imum ecological benefits over the lifetime of the contract. If mow-
ing accelerates or improves forb establishment, then it could
significantly increase the lifetime ecosystem service provision of
a CRP contract at a relatively low cost (Phillips-Mao et al. 2015).

Site conditions, annual rainfall, and landscape factors can
all influence outcomes in restoration projects (Bakker
et al. 2003; MacDougall et al. 2008; Matthews et al. 2009,
2017); however, very few restoration studies are replicated
at different sites or in different years (Sutherland et al. 2004;
Rowe 2010; Fraser et al. 2020). In a previous study performed
at a different research site (Meissen et al. 2020), we demon-
strated that seed mix design and first-year mowing influence
ecological outcomes in conservation projects; however, the
effects of planting time were not assessed. In this study, we
replicated the experimental design of Meissen et al. (2020) at
a new site and added one additional management decision:
the effects of dormant-season versus spring planting. We
established research plots using a full factorial design: three
seed mixes with different diversity and grass-to-forb seeding
ratios (3:1, 1:1, and 1:3), two planting times (dormant season
and spring), and two first-year mowing treatments (mown
and unmown). To assess ecological outcomes, we measured
sown species richness, stem density (sown grasses and sown
forbs), cover (sown plants, unsown native plants, annual
weeds, perennial weeds, and bare ground), sown floral den-
sity, and sown floral richness in the second year after estab-
lishment. To assess whether the effects of seed mix design
and first-year mowing are robust to site, annual, and landscape
variability, we compared the results of the current study to
Meissen et al. (2020). The consistency with which manage-
ment decisions impact ecological outcomes will influence
the likelihood of widespread implementation by restoration
practitioners.
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Management decisions affect conservation outcomes

Methods

Study Site

We conducted this study at the University of Northern Iowa’s
Tallgrass Prairie Center in Cedar Falls, Iowa, USA (42°30'N,
92°28'W). The land used to establish this research site had pre-
viously been used for corn and soybean production, with
corn produced the year prior to retirement. The site is relatively
level (slopes not exceeding a 5% grade) and the soil is a mixture
of Clyde-Floyd complex (approximately 90%) and Kenyon
loam (approximately 10%) (Natural Resources Conservation
Service 2021).

Seed Mixes and Seeding Rate

We established research plots with three different seed mixes,
which we named the Economy mix, Diversity mix, and Pollina-
tor mix. We designed the seed mixes to meet the seed mix cri-
teria of three CRP conservation practices. The seed mixes
differed in grass-to-forb seeding ratios, diversity, and species
composition.

We designed the Economy mix to meet the seed mix criteria
of CP25: Rare and Declining Habitat. This conservation practice
strives to reduce soil erosion and provide habitat for declining
wildlife species. CP25 stands typically have low to moderate
diversity and are planted with a higher density of grass seed than
forb seed. Accordingly, our Economy mix consisted of 21 native
grass and forb species at a 3:1 grass-to-forb seeding ratio
(Table S1). The cost of the Economy mix was $85 ha™".

We designed the Diversity mix to meet the seed mix criteria
of CP43: Prairie Strips. CP43 was established in the 2018 Farm
Bill and is growing in popularity in the Midwestern
United States. This conservation practice strives to reduce nutri-
ent loss, improve water quality, reduce soil erosion, and provide
wildlife habitat. The USDA recommends that CP43 stands be
planted with a diverse, balanced mixture of grass and forb seed.
Accordingly, our Diversity mix consisted of 71 native species at
a 1:1 grass-to-forb seeding ratio (Table S2). The cost of the
Diversity mix was $218 ha™".

We designed the Pollinator mix to meet the seed mix criteria
of CP42: Pollinator Habitat. This conservation practice strives to
enhance pollinator abundance by providing at least three flower-
ing species in bloom during spring, summer, and fall. CP42
stands are planted with a higher density of forb seed than grass
seed. Accordingly, our Pollinator mix consisted of 38 native
species at a 1:3 grass-to-forb seeding ratio (Table S3). The cost
of the Pollinator mix was $327 ha™'.

We purchased seed from native seed nurseries in Iowa in
2018 and stored it in coolers at 4°C and 45% relative humidity
prior to sowing. We weighed, bagged, and mixed the seed for
each plot separately. We used a seeding rate of 430 pure live
seed/m”.

Seasonal Planting Time

We established plots with two different planting times: dormant-
season and spring. We performed the dormant-season planting

in November 2018 and the spring planting in April 2019 after
the ground had thawed. We used a Truax FLX-86U no-till drill
for both planting time treatments. Prior to planting, we prepared
the soil by performing four passes with a disk cultivator to break
up residual corn litter and one harrow pass to create a uniform
soil surface.

First-Year Mowing

We established research plots with two different first-year mow-
ing treatments: mown and unmown. Plots that received the
mowing treatment (mown plots) were mowed with a Toro
2000 Titan HD to a height of approximately 13 cm four times
during the 2019 growing season: 12 June, 11 July, 8 August,
and 28 October. Plots that did not receive the mowing treatment
(unmown plots) were not mowed in 2019; however, in unmown
plots, we clipped plants that were within 0.5 m of the plot edge to
a height of 1 m in November 2019 to prevent tall vegetation
(>3 m) from falling over or dispersing seed into adjacent plots.
We left all thatch on site in both mown and unmown plots.

Experimental Design. We established 72 rectangular research
plots (8.5 m x 6.1 m each) using a randomized split-plot design.
The 72 research plots were divided into two spatial blocks with
each block containing 18 split plots (8.5 m x 12.2 m each). The
18 split plots were randomly assigned three replicates of each
seed mix x planting time treatment combination. In each split-
plot, we randomly selected one half as the mown subplot and
the other half as the unmown subplot (i.e., the mowing treatment
represented the subplot within the main plots which consisted of
a seed mix x planting time treatment combination). Overall, our
experimental design was: 3 seed mixes x 2 planting times x 2
first-year mowing treatments x 3 replicates x 2 spatial
blocks = 72 research plots (Fig. 1).

Data Collection

We collected habitat data at the end of the second growing sea-
son (August 2020). We established a randomly positioned 5.5 m
transect on the east—west axis of each plot. Along each transect,
we recorded the number of ramets greater than 10 cm tall of all
sown species in five 0.125-m quadrats. In the same quadrats,
we also recorded cover (at observer height [1.2 m], to the nearest
5%) for the following classes: sown plants, unsown native
perennials, perennial weeds, annual/biennial weeds, and bare
ground. Unsown native perennials were defined as potentially
desirable native species that were not part of the original seed
mix (e.g., Solidago altissima, Symphyotrichum pilosum, Geum
sp., and Potentilla sp.). The occurrence of these species was
likely due to the adjacency of our experiment site to a natural-
ized hedgerow habitat, which is atypical of most post-
agricultural prairie reconstructions. However, some species
may have originated from seed mix contamination, dispersal
from adjacent research plots, or regeneration from recently
farmed land. We categorized undesirable native and non-native
species as annual/biennial (e.g., Ambrosia trifida, Conyza cana-
densis) or perennial (e.g., Poa pratensis, Taraxacum officinale)
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Management decisions affect conservation outcomes

Experimental Treatments
Seed Mix

Diversity

Economy

Pollinator

Seeding Time
-~ Dormant
Growing Season
Mowing
%/ Mow
No Mow

Figure 1. The field experiment at the Cedar Falls, Iowa site employed a randomized split-plot design with 72 research plots divided into two spatial blocks. Each
block included 18 split plots, which were randomly assigned to one of six possible seed mix x planting time treatment combinations (three replicates of each per
block). The mowing treatment represented the subplot and was applied randomly to half of each split plot.

weeds (for complete categorization of all unsown species, see
Table S6). In addition to stem density of sown species and cover,
we recorded the number of inflorescences and species of sown
forbs rooted in the quadrat (sown floral density and richness).
The timing of our survey coincided with the peak bloom period
for these seed mixes; however, we acknowledge that we might
have missed early-flowering species that had already senesced
and species that had yet to flower with this approach. To mini-
mize edge effects, we did not sample quadrats within 1 m of plot
edges. In addition to the quadrat-sampling approach, we also
performed a 5-minute meandering walk to record the presence/
absence of sown species (sown species richness) and inflores-
cences (sown floral richness) in each plot. For the current study,

we present data from the 5-minute meandering walk (number of
species in plot) for sown species richness and floral richness in
our results because this approach was more likely to capture rare
species. However, for our cross-study comparison (see below),
we present data on sown species richness and floral richness
from the quadrat sampling (number of species/m?) approach
for the purpose of interstudy consistency.

Data Analysis

We compared response variables between treatment combina-
tions using analysis of variance (ANOVA), with seed mix,
planting time, and first-year mowing as fixed factors, and plot
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Management decisions affect conservation outcomes

nested within block as a random factor. To meet the assumptions
of normality and homoscedasticity of residual variance, sown
graminoid stem density, sown forb stem density, sown inflores-
cence number, and perennial weed cover were cube-root trans-
formed and sown floral richness, sown plant cover, unsown
native plant cover, annual weed cover, sown species richness
and sown floral richness were square-root transformed. We
determined the optimal transformations using Box-Cox ana-
lyses. Post hoc comparisons of significant treatment effects were
made using Tukey HSD tests.

To further examine the effect of planting time on community
composition, we classified sown species into six functional
groups: cool-season graminoids (grasses and sedges), warm-
season grasses, spring forbs, summer forbs, legumes, or fall
forbs (Tables S1-S3). We summed the stem density of all spe-
cies in each functional group and tested for differences between
planting times using ANOVA, with seed mix, planting time, and
first-year mowing as fixed factors and plot nested within block
as a random factor. To meet the assumptions of normality and
homoscedasticity of residual variance, warm-season grasses,
cool-season graminoids, all graminoids, summer forbs, fall
forbs and all forbs were cube-root transformed, spring forbs
were sqrt’l-transformed, and legumes were 1/yr-transformed.
We interpreted the main effect of planting time and plotted the
means and standard errors of each functional group pooled
across seed mixes and mowing treatments for comparison.
ANOVAs, Tukey HSD tests, Box-Cox analyses, and transfor-
mations were performed in R (v. 3.6.1. R Core Team 2019).

Because of past research demonstrating differences in forb
establishment by planting time (Larson et al. 2011) and the
importance of successful forb establishment for projects aiming
to create pollinator habitat, we examined differences in commu-
nity composition between dormant-season and spring planted
Pollinator mix plots. We square-root transformed the stem den-
sity data for sown species to reduce the influence of dominant
species, generated a Bray—Curtis similarity matrix, and
employed non-metric multidimensional scaling to visualize pat-
terns of variation in community composition. We tested for dif-
ferences in community composition using PERMANOVA with
planting time and mowing treatment as fixed factors and block
as a random factor (Anderson et al. 2008). We used similarity
percentages analysis (SIMPER; Clarke & Gorley 2015) to iden-
tify species favored by dormant-season or spring planting.
Within each functional group, we ranked species in decreasing
order by their relative contribution to Bray—Curtis dissimilarity
between dormant-season and spring planted plots. Community
analyses were performed using PRIMER 6 (version 6.1.13) with
PERMANOVA+ (version 1.0.3) (PRIMER-E Ltd., Plymouth,
UK) software.

Cross-Site Comparison of Seed Mix Design and First-Year
Mowing Effects

To examine whether the effects of seed mix design and first-year
mowing are robust to site, annual, and landscape variability, we
compared the results of the current study to a previous study
(Meissen et al. 2020). The previous study was conducted from

2015 to 2019 at Iowa State Northeast Research and Demonstra-
tion Farm in Nashua, Iowa (42°56'N, 92°34’W). The Nashua
site is relatively level (slopes not exceeding a 5% grade); the soil
is primarily poorly drained Clyde clay loams with a minor com-
ponent of somewhat poorly drained Floyd loams (Natural
Resources Conservation Service 2021). The land used to estab-
lish the Nashua site had previously been used for corn and soy-
bean production, with soybean produced the year prior to
retirement. We refer to the site from the current study as “Cedar
Falls” and the site from the previous study as “Nashua” through-
out the manuscript.

The Nashua study used a similar experimental design to the
Cedar Falls study (identical seed mixes, first-year mowing treat-
ments, replication, and spatial blocking); however, there was no
planting time treatment at Nashua; all plots at Nashua were
spring planted. Therefore, the experimental design of the
Nashua study was 3 seed mixes x 2 first-year mowing treat-
ments x 3 replicates x 2 spatial blocks = 36 research plots (see
fig. S1 in Meissen et al. 2020 for Nashua site map). Because of
this difference in experimental design, we compared Nashua
plots to spring planted Cedar Falls plots only.

We compared the effects of experimental treatment (i.e., seed
mix and first-year mowing) on ecosystem service provision
(erosion control, weed resistance, and pollinator resources)
between the Nashua and Cedar Falls studies. To assess erosion
control, we used sown cover and sown stem density, as these
factors have previously been identified as key determinants of
erosion resistance (Boyd 1942; Ellison 1950; Zuazo & Plegue-
zuelo 2009). To assess weed resistance, we used the absence
of bare ground and the absence of weeds (Middleton
et al. 2010; Carter & Blair 2012; Nemec et al. 2013). To assess
pollinator resources, we used sown floral density and richness
because these factors influence pollinator habitat quality
(Ebeling et al. 2008; Hopwood 2008; Pywell et al. 2011). At
each site, the seed mix with the highest value for each response
variable was scored as 100% and the other two seed mixes were
scored as the relative proportion of the highest value. We com-
pared the mowing effect between studies using the same
approach.

Results

Effects of Seed Mix, Planting Time, and Mowing

Sown Species Richness and Floral Richness. In general, all
three management factors influenced species richness, and there
was a significant seed mix X planting time interaction
(Table S4). Species richness was highest in the Diversity mix
and lowest in the Economy mix; higher in mown subplots than
in unmown subplots; and higher with dormant-season planting
than with spring planting (Fig. 2A). Planting time had stronger
effects in the Diversity and Pollinator mixes than in the Econ-
omy mix (Fig. 2A).

Sown floral richness was highest in the Diversity mix and
lowest in the Economy mix; higher in mown subplots than in
unmown subplots; and higher with dormant-season planting
than with spring planting (Fig. 2B). The significant seed
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Figure 2. Mean (£ SE) sown species richness (A), sown floral richness (B), sown inflorescences (C), sown graminoid density (D), and sown forb density (E) by
seed mix and mowing/planting time treatment combinations. Significant differences between seed mixes based on Tukey’s post hoc tests are indicated with

capital letters.

mix X planting time interaction occurred because the Pollinator
mix had higher floral richness than the Economy mix with
dormant-season planting but not with spring planting (Fig. 2B).

Sown Floral, Graminoid, and Forb Densities. Generally,
response variables affecting inflorescence or stem density were
affected by seed mix and mowing treatment, but not planting
time, and there were no significant interaction terms.

(Table S4). The Pollinator mix produced more inflorescences
than the Economy and Diversity mixes (Fig. 2C), and inflores-
cence production was higher in mown subplots than unmown
subplots (Fig. 2C). The Economy mix had the highest graminoid
stem density and the Pollinator mix had the lowest graminoid
stem density (Fig. 2D). The Diversity and Pollinator mixes had
significantly higher forb stem density than the Economy mix
(Fig. 2E). Mown subplots had higher graminoid and forb stem
density than unmown subplots (Fig. 2D & 2E).
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Cover. In general, cover by sown plants and annual weeds were
affected strongly by seed mix and mowing (Table S5). Sown plant
cover was higher in the Economy mix than in the Pollinator mix
and mown subplots had higher sown plant cover than unmown
subplots (Fig. 3A). Annual weed cover was higher in the Diversity

70 L (A) Sown plants

40
AB

?

O 1 1 1

30 F + B

Economy Diversity  Pollinator

mix than in the Economy mix, and lower in mown subplots than
unmown subplots (Fig. 3C). In addition, mowing reduced bare
ground cover compared to unmown subplots (Fig. 3E).

Planting time affected perennial weed and bare ground cover
and had a marginally significant effect on sown plant cover
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Figure 3. Mean (& SE) percent cover of sown plants (A), unsown native plants (B), annual (C) and perennial (D) weeds, and bare ground (E) by seed mix and
mowing/planting time treatment combinations. We categorized desirable native species (e.g., Solidago altissima, Symphyotrichum pilosum, Geum spp., and
Potentilla spp.) that were not part of the original seed mix but regenerated from the recently farmed land as unsown native plants. Conversely, we categorized
undesirable native and non-native species as annual/biennial (e.g., Ambrosia trifida, Conyza canadensis) or perennial (e.g., Poa pratensis, Taraxacum officinale)
weeds. Significant differences between seed mixes based on Tukey’s post hoc tests are indicated with capital letters.
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Figure 4. Differences in plant functional group composition in dormant-season and spring planted plots. Values presented are means (& SE) across all seed mixes
and mowing treatments. Significant differences between spring and dormant-season plantings based on Tukey’s post hoc tests are indicated with an *.
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Figure 5. Non-metric multidimensional scaling (NMDS) of plant
community composition in dormant-season and spring planted Pollinator
mix plots. Vectors indicate species with Pearson correlations to NMDS
greater than 0.40. Species include: ANDGER = Andropogon gerardii,
CARSPP = Carex spp., DALCAN = Dalea candida, DALPUR = Dalea
purpurea, KOEMAC = Koeleria macrantha, LIAPYC = Liatris
pycnostachya, MONFIS = Monarda fistulosa, SOLRIG = Solidago rigida,
SPOCOM = Sporobolus compositus, SYMERI = Symphyotrichum
ericoides.

(Table S5; Fig. 3). Perennial weed and bare ground cover were
higher with spring planting than with dormant-season planting
(Fig. 3D) and sown plant cover was marginally higher (p = 0.051)
with dormant-season planting than spring planting (Fig. 3A).

Planting Time Effects on Community Composition

Planting time did not influence the total number of graminoid or
forb stems; however, it did influence functional group composi-
tion. Dormant-season planting favored the establishment of
cool-season graminoids (F 9 = 6.18, p = 0.019) and spring
(Fipo = 12.0, p = 0.002) and fall forbs (Fy,9 = 14.07,
p = 0.001), whereas spring planting favored the establishment

of warm-season grasses (F 29 = 8.91, p = 0.006) and legumes
(F120 = 10.0, p = 0.004; Fig. 4).

Planting time had a strong effect on community composition
in the Pollinator mix (PERMANOVA, Pseudo-F; ;3 = 3.73,
p = 0.0004; Fig. 5). Influential species favored by dormant-
season planting included Carex spp., Koeleria macrantha,
Liatris  pycnostachya, Solidago rigida, Symphyotrichum
ericoides, Symphyotrichum novae-angliae, Symphyotrichum
laeve, and Zizia aurea; those favored by spring planting
included Andropogon gerardii, Dalea candida, Dalea purpurea,
Monarda fistulosa, Ratibida pinnata, Rudbeckia hirta,
Schizachyrium scoparium, and Sporobolus compositus (see
Table 1 for complete species list).

Cross-Site Comparison of Seed Mix Design and First-Year
Mowing Effects

Differences in ecosystem service provision between seed mixes
were comparable between this study and our previous study at a
different site (Meissen et al. 2020). Erosion control, which was
assessed using cover and stem density of sown species, was
highest in the Economy mix and lowest in the Pollinator mix
at both sites (Table 2). Weed resistance, which was assessed
using the absence of weeds and absence of bare ground, was
highest in the Economy and Diversity mixes and lowest in the
Pollinator mix at both sites (Table 2). Weed cover was lowest
in the Economy mix and highest in the Pollinator mix at both
sites. Cover by bare ground was lowest in the Diversity mix and
highest in the Pollinator mix at both sites. Pollinator resources,
which were assessed using sown floral density and richness, were
highest in the Diversity and Pollinator mixes and lowest in the
Economy mix at both sites (Table 2). Inflorescence production
was highest in the Pollinator mix and lowest in the Economy
mix at both sites. Floral richness was highest in the Diversity
mix at Nashua, highest in the Diversity and Pollinator mixes at
Cedar Falls and lowest in the Economy mix at both sites.
Differences in ecosystem service provision between mowing
treatments were also comparable between studies. In general,
erosion control, weed resistance, and pollinator resources were
higher in mown subplots than unmown subplots at both sites
(Table 3). The average loss in ecosystem service provision in
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Management decisions affect conservation outcomes

Table 1. Plant species responsible for community dissimilarity between dormant-season and spring planted Pollinator mix plots. *Percentage of total dissimi-
larity contributed by each species. "Dormant-season and spring planted stem densities calculated from untransformed data.

Functional group Species Contrib%" Dormant-season” (stems/m’) Spring (stems/m?)
Spring forbs Zizia aurea 3.69 1.42 0.58
Penstemon digitalis 2.83 1.08 0.00
Viola pedatifida 0.47 0.08 0.00
Summer forbs Rudbeckia hirta 11.50 12.08 14.92
Ratibida pinnata 4.79 1.75 2.00
Monarda fistulosa 2.67 0.33 0.92
Eryngium yuccifolium 1.57 0.33 0.33
Drymocallis arguta 1.52 0.33 0.17
Asclepias tuberosa 1.19 0.00 0.33
Echinacea pallida 1.05 0.08 0.17
Heliopsis helianthoides 0.48 0.00 0.08
Silphium integrifolium 0.40 0.00 0.08
Pycnanthemum virginianum 0.34 0.00 0.17
Veronicastrum virginicum 0.33 0.08 0.00
Silphium laciniatum 0.29 0.08 0.00
Asclepias syriaca 0.24 0.00 0.08
Legumes Dalea purpurea 2.56 0.00 1.25
Dalea candida 2.04 0.00 0.75
Fall forbs Symphyotrichum ericoides 5.42 2.67 0.25
Symphyotrichum novae-angliae 5.29 2.92 2.67
Symphyotrichum laeve 3.75 1.58 0.25
Helenium autumnale 3.30 1.33 0.08
Solidago rigida 2.52 1.08 0.00
Vernonia fasciculata 2.00 0.25 0.58
Liatris pycnostachya 1.54 0.33 0.00
Symphyotrichum oolentangiense 0.99 0.17 0.08
Solidago speciosa 0.56 0.08 0.00
Warm-season grasses Schizachyrium scoparium 8.31 4.00 7.00
Andropogon gerardii 7.97 0.75 5.50
Sporobolus compositus 3.46 0.93 1.25
Bouteloua curtipendula 1.79 0.00 0.92
Cool-season graminoids Carex spp. 7.96 4.75 0.17
Koeleria macrantha 7.15 7.92 1.58

Table 2. The impact of seed mix on ecosystem service provision at two study sites: Nashua and Cedar Falls (CF). For consistency between study sites, values are
based on second year performance in spring planted plots only. At each site, the seed mix with the highest value for each variable was scored as a 100% and
bolded for clarity and other seed mixes were scored as a relative proportion of the highest value.

Economy mix

Diversity mix Pollinator mix

Service Attribute Nashua CF Nashua CF Nashua CF
Erosion control Sown cover 100 % 100 % 89% 88% 59% 62%
Sown stem density 100% 100% 76% 78% 22% 38%
Weed resistance Absence of weeds 100 % 100% 82% 97% 61% 75%
Absence of bare ground 90% 88% 100% 100% 69% 82%
Pollinator resources Inflorescence production 9% 22% 46% 23% 100 % 100%
Sown floral richness 31% 79% 100% 100% 51% 100 %

unmown subplots was also comparable between sites
(Nashua = —38%, Cedar Falls = —28%; Table 3).

Discussion

In this study, we examined the impact of three management
decisions (seed mix design, first-year mowing, and planting
time) on ecological outcomes of conservation projects involving

revegetation of native grass and forb species. Our results indi-
cate that all three management decisions strongly influence veg-
etation outcomes during the early years of a revegetation project.
Seed mix design and first-year mowing influence nearly every
aspect of stem density and cover, while planting time influences
floral richness and community composition. A cross-study com-
parison revealed remarkable consistency in the effects of seed
mix design and first-year mowing, suggesting that the effect of

Restoration Ecology

9of 13

85UB01 T SUOWIWOD SA 181D 3|(cfedldde auy Aq peuseno aJe sspile O ‘8sN JO S8|nJ 10} A%Iq178UlUQ A8]I/ UO (SUONIPUOD-PUR-SULLIBY WD A8 | I ARe.d1|BUl UO//:SdNL) SUONIPUOD Pue SWS 1 8L 88S *[2202/TT/82] Uo ARIqi7auliuo A8]iM Bmo| UBYLON JO AISeAIuN Ag 8TBET 9I/TTTT OT/I0P/L0Y A8 M ArIq1jeul|uO//SdNy Wouy pepeojumod ‘0 *XO0T9ZST



Management decisions affect conservation outcomes

Table 3. The impact of first-year mowing on ecosystem service provision at two study sites: Nashua and Cedar Falls (CF). For consistency between study sites,
values are based on second year performance in spring planted plots only. At each site, the mowing treatment with the highest value for each variable was scored
as a 100% and bolded for clarity and the other mowing treatment was scored as a relative proportion of that percentage.

Mow No mow
Service Attribute Nashua CF Nashua CF
Erosion control Sown cover 100 % 100 % 49% 68%
Sown stem density 100% 100% 40% 52%
Weed resistance Absence of weeds 100 % 100 % 40% 97%
Absence of bare ground 82% 100% 100% 80%
Pollinator resources Inflorescence production 100% 100% 41% 61%
Sown floral richness 100 % 100 % 85% T7%

these management decisions are robust to moderate variation
in site conditions, landscape context, and local climate, includ-
ing annual rainfall.

Seed Mix Design. Grass-to-forb seeding ratio has a profound
and predictable impact on ecological outcomes in conservation
projects involving revegetation of native grass and forb species.
Grass-dominated stands (e.g., the Economy mix) tend to have
higher native cover, higher grass stem density, and lower weed
abundance than forb-dominated stands (e.g., the Pollinator mix).
Because of these attributes, moderately diverse, grass-dominated
stands are well suited to conservation projects striving to mini-
mize nutrient loss and erosion (Boyd 1942; Ellison 1950; Helmers
et al. 2012), minimize weed invasion (Schramm 1990; Stevenson
etal. 1995; Van der Putten et al. 2000), and provide cover for wild-
life, such as USDA’s Rare and Declining Habitat Conservation
Practice (CP25) (USDA 2021). In contrast, forb-dominated
stands tend to have higher forb stem density, higher floral rich-
ness, and higher floral abundance than grass-dominated stands.
Because of these attributes, forb-dominated stands are well
suited to conservation projects striving to provide high-quality
pollinator habitat (Hopwood 2008; Pywell et al. 2011), such as
USDA’s Pollinator Habitat Conservation Practice (CP42)
(USDA 2021). Our results are consistent with previous studies
on the impact of grass-to-forb seeding ratio on native stem den-
sity and cover in restoration projects (e.g., Dickson & Busby
2009; Larson et al. 2011, 2017).

A site-customized, high-diversity, grass-to-forb balanced seed
mix (e.g., the Diversity mix) has the potential to produce a vegeta-
tion community that is more multifunctional than either grass- or
forb-dominated stands. Grass-dominated stands tend to provide
erosion control and weed resistance but not pollinator resources;
forb-dominated stands tend to provide pollinator resources but
not weed resistance or erosion control. Our results suggest that a
high-diversity, grass-to-forb balanced seed mix can effectively
provide all three ecosystem services. Stem density and cover of
sown species was comparable between the Diversity mix and
Economy mix, suggesting that both would provide effective ero-
sion control and weed resistance. The Diversity mix also had com-
parable forb stem density and floral richness to the Pollinator mix,
suggesting that both would provide high-quality pollinator habitat.
While pollinator communities were not measured directly in the
current study, research suggests that communities with higher

floral richness tend to attract a more diverse assemblage of pollina-
tors (Hopwood 2008; Pywell et al. 2011; Myers et al. 2012).
Although the Pollinator mix had higher sown floral density than
the Diversity mix, this result was largely driven by two, highly
abundant species: R. hirta (>75% of inflorescences in the Pollina-
tor mix) and R. pinnata (8.5% of inflorescences in the Pollinator
mix; data not shown). R. hirta is an early successional species that
tends to become less common in stands with time (Williams
et al. 2007), suggesting that floral density would likely decrease
with time in the Pollinator mix as well. Because of its capacity
to simultaneously provide erosion control, weed resistance, and
pollinator resources, we recommend a site-customized, high-
diversity, grass-to-forb balanced seed mix to any land manager
striving for whole ecosystem restoration of native tallgrass prairie.

First-Year Mowing. First-year mowing facilitates native plant
establishment during the early stages of a revegetation project.
Across seed mixes, first-year mowing increased graminoid stem
density, forb stem density, cover by sown plants, sown species rich-
ness, and weed resistance. The consistency of these effects across
seed mixes suggests that first-year mowing can enhance the provi-
sioning of ecosystem services in many different settings. High
establishment rates during the early years of a restoration project
can have a long lasting influence on the restored community. Previ-
ous studies have shown that non-native species can outcompete
native prairie species if they establish first (Dickson et al. 2012;
Wilsey et al. 2015), suggesting that priority effects shape recon-
structed prairie communities (Temperton & Hobbs 2004). Never-
theless, many land managers do not mow during the early years
of a tallgrass prairie restoration (Rowe 2010). In addition to native
plant establishment, first year mowing also increased floral density
and richness. Because CRP contracts typically last only 10—
15 years, improvements in the provisioning of floral resources in
the early years of a conservation project would help maximize its
lifetime value as pollinator habitat on the landscape. Future research
should examine whether the beneficial effects of first year mowing
also occur at restoration sites with slower growing vegetation
(e.g., mixed-grass prairie, short-grass prairie).

Planting Time. Dormant-season planting could be a beneficial
management practice for pollinator enhancement projects for
several reasons. First, stands planted in the dormant-season
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had higher floral richness than stands planted in the spring. Flo-
ral richness is a key determinant of pollinator habitat quality
(Hopwood 2008; Pywell et al. 2011; Myers et al. 2012). Second,
stands planted in the dormant-season had more cool-season gra-
minoids and fewer warm-season grasses than stands planted in
the spring. Grasses are typically seeded at low rates in pollinator
habitat conservation projects to reduce competition for native
forbs (USDA 2021). Some C, perennial grasses, such as big
bluestem (A. gerardii) are known to outcompete forbs (Grman
et al. 2021), suggesting that planting in the dormant-season
would improve forb persistence. Third, stands planted in the
dormant-season had more spring forbs and fall forbs than stands
planted in the spring. Past research on pollinator habitat restora-
tion has shown that the timing of nectar production can be just as
important as total nectar production in restored plant communi-
ties (Timberlake et al. 2019) and that restoration sites in agricul-
tural landscapes often produce plant communities with low
nectar availability early and late in the growing season
(Havens & Vitt 2016; Timberlake et al. 2019). One goal of the
Pollinator Habitat Conservation Practice (CP42) is to establish
a minimum of three flowering species during each of three dif-
ferent seasonal bloom periods (spring, summer, fall) throughout
the growing season (USDA 2021). By improving establishment
of spring and fall forbs, dormant-season planting would increase
the probability of achieving this goal. Fourth, stands planted in
the dormant-season had fewer perennial weeds and less bare
ground than stands planted in the spring. Perennial weeds are a
major concern in conservation projects because they reduce
native richness and diversity (Blumenthal et al. 2003; Martin &
Wilsey 2012) and increase long-term management costs. We
recommend dormant-season planting to land managers striving
to enhance pollinator habitat. Our results are consistent with pre-
vious studies in showing that planting time has minimal effects
on overall stem density but influences native species establish-
ment (Peters & Schottler 2010; Boeck Crew et al. 2020) and
community composition (Larson et al. 2011, 2017).

One caveat about our recommendation for dormant-season
planting relates to the establishment of milkweeds (Asclepias
spp.). Milkweed establishment is an important goal of many pol-
linator habitat conservation projects because they are larval host
plants for the eastern migratory monarch (Danaus plexippus plex-
ippus) butterfly (Thogmartin et al. 2017). Previous research has
shown that some milkweed species are more abundant in conser-
vation grasslands where they were seeded than in sites where they
were not sown (Lukens et al. 2020), and increasing milkweed
stem density in the agricultural landscape by including them in
restoration plantings is a goal in monarch conservation initiatives
(Monarch Joint Venture 2021). In contrast to our general conclu-
sion that dormant-season planting would be a beneficial strategy
for enhancing pollinator habitat, stands planted in the dormant-
season had lower milkweed establishment. At least one milkweed
species (Asceplias syriaca or A. tuberosa) was present in 67% of
spring planted plots compared to 33% of dormant-season plots
(Fisher’s exact test, p = 0.22), and milkweed stem density was
significantly greater in spring planted plots (0.42 stems/m?) than
in dormant-season plots (0.00 stems/mz; Kruskal-Wallis,
H, = 457, p = 0.033). Spring planting may have favored

milkweed establishment for a variety of reasons. Seeds planted
in the dormant-season are more vulnerable to predation
(Howe & Brown 1999; Pellish et al. 2018; Riebkes et al. 2018),
parasitism by microorganisms (fungal and bacterial decomposi-
tion), seed senescence (Chambers & MacMahon 1994; Blaney &
Kotanen 2002; Clark & Wilson 2003), and environmental causes
of seed loss (e.g., wind, rain) than seeds planted in the spring. It is
also possible that higher establishment rates of other species in
dormant-season plantings resulted in increased competition for
germinating milkweed plants. While we still advocate for
dormant-season planting in pollinator habitat conservation
projects, we also recommend that landowners increase milkweed
seeding rates to overcome their lower establishment rates.

Cross-Study Comparison of Management Effects. Many
studies implement experiments at a single location which can
result in outcomes reflecting local site conditions instead of
treatment differences (Gibson et al. 1993). Our cross-study com-
parison revealed remarkably consistent effects of seed mix
design and first-year mowing, suggesting that these manage-
ment effects have a greater impact on project outcomes than
local site conditions. The Economy, Diversity, and Pollinator
mixes displayed the same relative ranking at Cedar Falls and
Nashua for all six traits used to assess ecosystem service provi-
sion. Furthermore, the standardized scores for each trait x seed
mix combination were similar between sites (average difference
in standardized score between Cedar Falls and Nashua = 11%).
In the Nashua study (Meissen et al. 2020), we recommended the
Diversity mix to land managers striving for whole ecosystem
restoration because of its capacity to effectively provide erosion
control, weed resistance, and pollinator resources. Our cross-
study comparison only increases our confidence in this recom-
mendation. Forb-dominated seed mixes, such as the Pollinator
mix, provide high-quality pollinator habitat but their low native
cover and high susceptibility to weed invasion are unattractive
attributes for restoration projects in general. First-year mowing
improved ecosystem service provisioning at both sites to a com-
parable degree. We recommend this approach in Midwestern
revegetation projects involving native grasses and forbs because
of its capacity to simultaneously enhance the provisioning of all
three ecosystem services (erosion control, weed resistance, and
pollinator resources).
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