2 3	1	SUDDI EMENTAL SEED INCREASES NATIVE SEEDI ING ESTARI ISHMENT IN
4 5	1	DO A DOUDE DE A IDUE DECTOR A TION
6 7	2	ROADSIDE PRAIRIE RESTORATION
8 9	3	
10 11	4	Submission Category: Research Article
12 13 14	5	Authors: Jessica L. Riebkes ¹ , Mark E. Sherrard ^{1,3} , Laura L. Jackson ^{1,2}
15 16 17	6	Affiliations: ¹ Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, 50614-
17 18	7	0421
19 20 21	8	² Tallgrass Prairie Center, 2412 West 27th Street, Cedar Falls, Iowa, 50614-0294
22 23	9	³ Corresponding Author: Mark Sherrard, <u>mark.sherrard@uni.edu</u>
24 25 26	10	Running head: Supplemental seed in roadside prairie restoration
26 27 28	11	
29 30	12	Author contributions: JLR, LLJ conceived and designed the research; JLR performed the
31 32 33	13	experiment; JLR, MES analyzed the data; JLR, MES, LLJ wrote and edited the manuscript; MES
33 34 35 36 37	14	made the figures.
	15	
38 39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
52 53		
54 55		
56 57		
58 59		
60		

ABSTRACT

Tallgrass prairie restorations are plagued by high seed costs and low rates of seedling establishment. Many restorations suffer high rates of seed loss to granivores, yet to date, there are no established protocols to minimize their impact. In this study, we tested whether the application of supplemental (sacrificial) seed reduces native seed consumption and increases native seedling establishment in roadside prairie restoration. We applied supplemental birdseed to a random subset of research plots at three roadside prairie restoration sites and compared rates of seed consumption and early native seedling establishment between supplemental seed plots and control plots. All three roadside restorations were seeded in fall 2014, immediately following the first frost. To assess native seed consumption, we monitored rates of seed removal from "seed cards" during the first 14 days of the restorations. To assess early seedling establishment, we identified and counted all native seedlings in mid-July of the first restoration year. The application of supplemental seed did not reduce rates of seed consumption, which were very low during the early stages of these restorations, but did increase early native seedling establishment. Native seedling establishment was approximately 37% higher in supplemental seed plots than in control plots across restoration sites. The application of supplemental seed may have increased seedling establishment by reducing consumption of native seed during winter and spring. Our results suggest that supplemental seed is a practical, inexpensive technique for increasing seedling establishment in roadside prairie restoration.

Keywords: buffet experiment, roadside restoration, seed predation, seedling establishment,

supplemental seed, tallgrass prairie restoration

1		5
2 3 4 5 6 7 8 9	24	IMPLICATIONS FOR PRACTICE
	25	• This study suggests that it is possible to mitigate seed loss due to granivores and increase
	26	native seedling establishment in roadside prairie restoration by using supplemental seed.
10 11 12	27	• One mechanism through which increased seedling establishment could improve the
12 13 14	28	success of roadside prairie restoration is by reducing weed biomass. High weed biomass
15 16	29	can delay or prevent native establishment, reduce native richness and diversity, and
17 18 19	30	increase management costs in prairie restoration.
20 21	31	• In this study, supplemental seed increased the cost of roadside prairie restoration by
22 23 24	32	approximately 16% while boosting seedling establishment by approximately 37%. This
24 25 26	33	suggests that practitioners may be able to reduce native seeding rates, and therefore net
27 28	34	costs, by using supplemental seed in roadside prairie restoration.
29 30 31	35	
32 33	36	
34 35 36	37	
37 38	38	
39 40 41	39	
42 43	40	
44 45	41	
46 47 48	42	
49 50	43	
51 52	44	
53 54 55	45	
56 57	46	
58 59 60		

6

 INTRODUCTION

The tallgrass prairie ecosystem, which once covered approximately 100 million ha of North America, now occupies less than 3 percent of its original expanse (Sampson & Knopf 1994; Smith 1998; Smith et al. 2010). Restoration practitioners are attempting to reestablish this endangered ecosystem and the services it once provided, but these projects are notoriously costly (Gerla et al. 2012). A low-diversity seed mixture (20-30 species) can cost between \$500 and \$1500 ha⁻¹, while a high-diversity mixture (50-70 species) can cost as much as \$5000 ha⁻¹ (Prairie Moon Nursery 2013). Low seedling establishment is a major contributor to this cost. Restoration practitioners typically sow between 400 and 950 pure live seeds (PLS) m⁻² to achieve a final stand density of 30 adult plants m^{-2} (Smith et al. 2010; Williams 2010): an establishment rate of 3.1 - 7.5%. Identifying the causes of seed loss in native prairie restoration, and developing protocols to minimize this loss, could improve restoration success.

Small vertebrate granivores, such as meadow voles, field mice, and birds, can be a significant cause of seed loss in tallgrass prairie restorations. Previous studies have shown that these granivores can reduce seed number in prairie restorations (Howe & Brown 1999; Clark & Wilson 2003; Hemsath 2007) and alter the composition of the emerging community (Howe & Brown 1999, 2000). Further, a recent study found that small vertebrate granivores reduce native seedling emergence by approximately 30% in newly restored prairies (Pellish et al. in press). This reduction in seedling emergence could lead to higher weed establishment, which could delay or prevent native seedling establishment, increase management costs, and reduce the overall quality of the restoration (Schramm 1990; Blumenthal et al. 2003, 2005; Grman & Suding 2010; Dickson et al. 2010; Martin & Wilsey 2012; Nemec et al. 2013). To date, there are

Restoration Ecology

no established protocols for reducing the impact of small vertebrate granivores in native tallgrass
prairie restoration.

One technique that could reduce vertebrate granivory during prairie restoration is the use of chemical feeding deterrents. Capsaicin, for example, is an effective feeding deterrent against mammalian granivores (Levey et al. 2006) and increases seedling recruitment for some prairie species during restoration (Hemsath 2007). Similarly, the fungicide Thiram emits a sulfurous odor that repels birds and deer mice from agricultural seed (Nolte & Barnett 2000; Ngowo et al. 2005). However, this technique may not be feasible for prairie restoration because of the variable morphology of prairie seeds (size, shape, and texture) and the environmental exposure that seeds experience before germination. Another technique that could reduce vertebrate granivory during prairie restoration is the application of supplemental (sacrificial) seed. The use of supplemental seed is based on the evolutionary principles of mast seeding (Janzen 1971; Kelly 1994; Kelly et al. 2000; Kelly & Sork 2002) and optimal diet theory (Sih & Christensen 2001). Mast seeding is the intermittent production of large synchronized seed crops. In high seed years, the seed crop satiates granivores, reducing overall seed loss. Optimal diet theory suggests that granivores should preferentially consume seeds that provide higher net energy intake per unit handling time (Janzen 1971; Pulliam & Brand 1975; Kerley & Erasmus 1991; Sih & Christensen 2001). Based on these principles, providing granivores with an abundant, higher-calorie seed source should reduce consumption of native seeds during restoration. If so, the application of supplemental seed could be a practical, inexpensive technique for improving restoration success.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
აა ე⊿	
34 25	
20	
27	
31 20	
20	
39 40	
+0 ⊿1	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

92	Roadsides are an integral component of restoration efforts in Iowa, U.S.A. (Smith 1998; Houseal
93	& Smith 2000). In 1988, Iowa legislation established the integrated roadside vegetation
94	management (IRVM) program and the Living Roadway Trust Fund to support the restoration
95	and protection of native vegetation in the state's roadsides (Brandt et al. 2015). Since that time,
96	more than 20,000 ha of roadside have been restored to native prairie (Iowa Department of
97	Transportation 2017). In addition to improving the aesthetics of Iowa's roadsides, these
98	restoration projects reduce soil erosion, improve water quality, reduce herbicide use, and provide
99	valuable habitat for wildlife (Christiansen & Lyons 1975; Flynn 1994; Ries et al. 2001; Brandt et
100	al. 2015). Improving the success of these roadside restoration projects will contribute to the
101	overall recovery of the tallgrass prairie ecosystem.
102	
103	In this study, we examine the effect of supplemental seed addition on roadside prairie restoration.
104	We applied supplemental birdseed to research plots at three roadside restoration sites and
105	compared rates of seed consumption and native seedling establishment between supplemental
106	seed plots and control plots. We predicted that the application of supplemental seed would
107	reduce consumption of native seeds during the initial stages of the roadside restoration and
108	increase early native seedling establishment.
109	
110	
111	
112	
113	

1		
2 3 4	114	METHODS
5 6 7 8 9	115	Study Sites
	116	This research was conducted in 2014 and 2015 at three county roadside restoration sites in Iowa,
10 11	117	U.S.A. One site was located in Linn County, Iowa and two sites were located in Benton County,
12 13 14	118	Iowa (Fig. S1). For convenience, we refer to these as the Linn, Benton North (Benton N) and
15 16	119	Benton South (Benton S) sites throughout the article. The roadsides were regraded in summer
17 18	120	2014 and seeded with native prairie vegetation in fall 2014 by the Linn and Benton County
19 20 21	121	Secondary Roads Departments.
22 23	122	
24 25 26	123	Linn - The Linn County restoration site was 0.11 ha in size and located in Marion, Iowa (42° 2'
20 27 28	124	6.6" N; 91° 31' 13" W, Fig. S1). The site was on the south side of Marion Airport Road, which
29 30 31	125	runs east to west. Prior to restoration, the site was dominated by nonnative grasses, including:
31 32 33	126	Agropyron repens L. (Quack grass), Bromus inermis Leyss. (Smooth brome), Medicago sativa L.
34 35	127	(Alfalfa), Poa pratensis L. (Kentucky bluegrass), and Trifolium pratense L. (Red clover).
36 37	128	Management consisted of biannual roadside mowing and spot-spraying or mowing of noxious
38 39 40	129	weeds. The soil at Linn is classified as Klinger-Maxfield silty clay loams (Natural Resources
41 42	130	Conservation Service 2013). In summer 2014, the vegetation and a layer of topsoil were stripped
43 44 45	131	from the site. On August 6 2014, the site was hydroseeded with a cover crop of Avena sativa L.
46 47	132	(Common oats; 5.6 g m ⁻²), <i>Elymus canadensis</i> L. (Canada wild rye; 0.11 g m ⁻²), and <i>Secale</i>
48 49	133	<i>cereale</i> L. (Cereal rye; 5.6 g m ⁻²) using a Finn T-90 hydroseeder (Finn Corporation, Fairfield,
50 51 52	134	OH, U.S.A.) and then cultipacked with a Reinco 6-foot mulch disc cultipacker (Reinco Inc.,
53 54	135	Fairfield, NJ, U.S.A.).
55 56 57 58 59 60	136	

1
2
3
4
5
6
7
<i>i</i>
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
20 24
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
04 55
55
56
5/
58
59
60

137	On September 26 2014, we established six research plots at Linn. The plot sizes were 37 m (east
138	to west) \times 5 m (north to south). The first frost at Linn occurred on October 30 2014. On
139	November 12 2014, the Linn County Secondary Roads Department drill-seeded the site with a
140	30-species mixture (Table S1) at the rate of 1.174 g m ⁻² (576.5 seeds m ⁻²) using a Truax grass
141	drill (Truax Company, Inc., New Hope, MN, U.S.A.). The site was mowed on June 23 2015, to
142	manage weeds and prevent the cover crop from becoming the dominant vegetation.
143	
144	Benton N and Benton S - The Benton County restoration sites were located near Atkins, Iowa
145	(Benton N: 41° 59' 7" N; 91° 51' 13" W, Benton S: 41° 57' 29" N; 91° 51' 13" W, Fig. S1).
146	Benton N was 0.3 ha in size and Benton S was 0.55 ha in size and both were located on the east
147	side of 33rd Avenue / West 28 th Street in a portion of the roadside that runs north to south. Prior
148	to restoration, both sites were dominated by the nonnative grass Bromus inermis Leyss. (Smooth
149	brome) and management consisted of occasional spraying with 2-4D or Milestone for noxious
150	weeds. The soils at Benton N and Benton S are classified as Kenyon loam (Natural Resources
151	Conservation Service 2013). In late summer 2014, the vegetation and a layer of topsoil were
152	stripped from the site to make the ditch wider, less steep, and to create a shoulder for the road.
153	On September 8 2014, the sites were planted with a cover crop of Triticum aestivum (Winter
154	wheat; 5.6 g m ⁻). The cover crop was drill-seeded on the bottoms and foreslopes with a Truax
155	Flex II drill (Truax Company, Inc., New Hope, MN, U.S.A.) and hydroseeded on the backslopes
156	using a Finn hydroseeder (Finn Corporation, Fairfield, OH, U.S.A.). On September 26 2014,
157	eight plots were established at Benton N and 15 plots were established at Benton S. Each plot
158	was 10 m (east to west) \times 37m (north to south). The first frost at the Benton sites occurred on
159	October 23 2014. On October 29 2014, the Benton County Secondary Roads Department drill-

seeded the foreslopes and bottoms of both sites with a 35-species mixture (Table S1) at a rate of 5.6 g m⁻² (3014.9 seeds m⁻²) using a Truax Flex II drill (Truax Company, Inc., New Hope, MN, U.S.A.). The backslopes were hydroseeded with the same seed mixture on the same day at the same seeding rate (5.6 g m⁻²) using a Finn hydroseeder (Finn Corporation, Fairfield, OH, U.S.A.).

In spite of their close proximity and identical seeding protocol, we treated Benton N and Benton
S as separate sites because of differences in ditch profile and hydrology. In particular, Benton N
was a steeper, dryer, upland site, while Benton S was a flatter, wetter, lowland site.

170 <u>Supplemental Seed</u>

The supplemental seed mixture consisted of an equal proportion (by mass) of four types of birdseed: black oil sunflower (Helianthus annuus L.), Nyjer thistle (Guizotia abyssinica L. f. Cass.), white millet (*Panicum miliaceum* L.), and cracked corn (*Zea mays* L.). All seed was obtained from Cedar River Milling Company (Waterloo, IA, U.S.A.). We added mineral salt to the supplemental seed mix at the rate of 4.1 g m⁻² to increase palatability (Weeks & Kirkpatrick 1976; Robbins 1983). To ensure that the supplemental seed would not germinate, we roasted the sunflower and millet seeds at 180°C for 30 minutes (Corbineau et al. 2002). To confirm that the seed was not viable, we attempted to germinate approximately 1 kg of roasted seed and detected no germination. The thistle seed was pre-sterilized and the corn was cracked, which renders the embryos non-viable.

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
10	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
22 22	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
40	
41	
48	
49	
50	
51	
52	
53	
55	
54	
55	
56	
57	
58	
59	

60

190

1

182 We applied the supplemental seed treatment immediately after the native species were seeded 183 (October 29 2014 at Benton N and Benton S; November 12 2014 at Linn). Supplemental seed 184 was applied to approximately half of the research plots: three (of six) plots at Linn, four (of 185 eight) plots at Benton N, and eight (of 15) plots at Benton S (Fig. S1). The plots receiving the 186 supplemental seed were chosen randomly. Supplemental seed was applied at ten times the seeding rate of the native seed (56 g m⁻² at Benton N and Benton S; 11.74 g m⁻² at Linn) using a 187 188 hand broadcast seed spreader (PlantMates model 76300, PlantMates LLC, Pasadena, TX, 189 U.S.A.).

191 Seed Removal Experiment

192 To assess granivory during the initial stages of these restorations, we monitored the rate of seed 193 removal from "seed cards" using a buffet-style experiment (e.g., Westerman et al. 2003; 194 Heggenstaller et al. 2006). The seed cards consisted of 30 well-filled *Echinacea pallida* seeds 195 glued to an 11 cm x 14 cm piece of coarse sand paper (3M Paper Sheet 346U, 36 Grit, aluminum) 196 oxide commercial D-weight, 3M Company, Maplewood, MN, U.S.A.). To attach the seeds, we 197 applied a base layer of aerosol spray adhesive (3M Super 77 Multipurpose Adhesive Aerosol, 198 3M Company, Maplewood, MN, U.S.A.) to the sand paper, placed the 30 seeds on the adhesive, 199 waited 24 hours, and then covered the seeds with another layer of aerosol spray adhesive. 200 Previous research suggests that the adhesive and sandpaper do not attract or deter predators from 201 the seeds (Westerman et al. 2003). We allowed the adhesive to dry for 48 hours before placing 202 the cards in the field. Seed cards were affixed to the soil using 5.1 cm roofing nails. We chose 203 Echinacea pallida because of seed morphology (relatively small, yet manageable to work with 204 and identify for counting) and because it was in the seed mixture at each restoration site.

1

Restoration Ecology

11

2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
23 24
24
25
26
27
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
JZ 52
00 E4
54
55
56
57
58
59
60

206	We conducted two seed card trials in this experiment. First, we conducted a seven-day trial
207	before the sites were seeded ("pre-planting trial": September 26 – October 3 2014) to assess
208	background levels of granivory at each site. All remaining seeds were counted on the seventh
209	day of this trial (October 3 2014) to quantify seed loss. Any seed that was missing, chewed, or
210	broken was considered consumed. Second, we conducted a 14-day trial after the sites were
211	seeded ("post-planting trial": October 29 – November 12 2014 at Benton N and Benton S;
212	November $12 - 26\ 2014$ at Linn). Remaining seeds were counted on the seventh and 14^{th} day of
213	this trial to quantify seed loss. We used the same protocol in the pre- and post-planting trials.
214	Specifically, we placed seven seed cards, equidistant to one another, along a transect at the center
215	of each plot (Fig. S2). To assess passive seed loss to factors such as wind, rain, adhesive failure
216	or flaws in card design, we placed a control seed card next to one, randomly-selected seed card
217	in each plot. The control seed card was placed inside a metal cage (32 cm x 14 cm x 8 cm) and
218	surrounded by insect barrier cloth (Agribon + AG 15, 118" X 50', lightweight grade) to exclude
219	small vertebrate granivores and invertebrate granivores respectively. We compared rates of seed
220	loss between the 7-day pre-planting trial and the seventh day of the post-planting trial. In the
221	post-planting trial, we compared rates of seed loss between supplemental seed plots and control
222	plots.

6 223

224 Seedling Establishment Experiment

We identified and counted all established seedlings at each roadside restoration site on July 20 24 2015. Because two seeding techniques were used at the Benton sites (drill seeding on
foreslopes and bottoms, hydroseeding on backslopes), we divided the ditch into three sections

(foreslope, bottom, backslope; Fig. S2) at each site and quantified seedling establishment within each section. The bottoms were defined as having a 0-5 degree slope, while the foreslopes (the section next to the road) and backslopes were defined as having a slope equal to or greater than five degrees as determined by a clinometer. In each plot, we identified and counted all seedlings in five, 0.1-m² guadrats in each section of ditch profile (i.e., 15 guadrats per plot). To minimize variation and provide a buffer between adjacent plots, all sampling was localized in the central five meters (of the long axis) of each plot (Fig. S2). Within that five-meter sampling area, guadrats were placed at five random positions along a transect at the center (by width) of each ditch section (Fig. S2). All native seedlings from the planted seed mixtures were counted and identified; however, we pooled the two *Liatris* species and the two *Carex* species to avoid misidentification of similar species (Natural Resources Conservation Service 2006; Williams 2010). Any identified seedlings that were not in the seed mixture were counted as weeds.

241 <u>Data Analysis</u>

In the seed removal experiment, we counted the remaining seeds on each seed card and quantified seed loss for each plot as the seven-card average. Less than one percent of seeds were lost from control cards, and consequently, we did not correct the data for passive seed loss. We analyzed the seed removal data using two different general linear models. First, we compared seed loss between the seven-day pre-planting trial and the first seven days of the post-planting trial in a model that had trial (pre-planting vs. post-planting) and site as fixed factors. For this analysis, we only used data from control plots in the post-planting trial because of the potential confounding effect of the supplemental seed addition. Second, we compared seed loss between supplemental seed plots and control plots at the end of the 14-day post-planting trial in a model

1		13
2 3 4	251	that had treatment (supplemental seed plots vs. control plots) and site as fixed factors. The
5 6	252	treatment \times site term was removed from both models because of non-significance. Removal of
7 8 9	253	this term did not alter the significance of any factor in either model.
10 11	254	
12 13 14	255	In the seedling establishment experiment, we counted the total number of established native
15 16	256	seedlings in the five 0.1 -m ² quadrats and divided by 0.5 to compute the number of established
17 18 10	257	native seedlings per m^2 in each section of the ditch profile. To test whether the application of
20 21	258	supplemental seed affected seedling establishment, we used a general linear model with
22 23	259	treatment, site, and section of ditch profile as fixed factors.
24 25 26	260	
27 28	261	In both the seed removal experiment and seedling establishment experiment, we inspected the
29 30 31	262	data for normality using boxplots and scatter plots (qqnorm plots) of model residuals-versus-
32 33	263	predicted values. Data from the seed removal experiment did not require transformation. Data
34 35	264	from the seedling establishment experiment was cube-root transformed to improve normality. All
36 37 38	265	data were analyzed in R (v. 3.1-109, R Core Team 2013).
39 40	266	
41 42 43	267	
44 45	268	
46 47 48	269	
40 49 50	270	
51 52	271	
53 54 55	272	
56 57	273	
58 59 60		

274 RESULTS

275 <u>Seed Removal Experiment</u>

276 Granivores consumed significantly more seed in the seven-day pre-planting trial (24.8%) than in

- 277 the first seven days of the post-planting trial (4.3%, F=26.15, p<0.001, Fig. 1, Table S2). In the
- 278 14-day post-planting trial, granivores only consumed 7.4% of seeds and seed consumption did
- not differ significantly between supplemental seed plots and control plots (F=1.35, p=0.256, Fig.

280 1, Table S3).

282 <u>Seedling Establishment Experiment</u>

283 On average, 128.4 ± 12.9 native seedlings m⁻² (mean \pm SE) established at the three roadside

restoration sites (Fig. 2). Seedling establishment differed between sites (*F*=3.52, *p*=0.035, Table

S4) and was significantly higher at Benton N (184.2 \pm 32.3) than at Linn (103.6 \pm 29.4).

Seedling establishment at Benton S (107.2 ± 11.0) did not differ significantly from either of the other two sites. Because the seeding rate was lower at Linn than at the Benton sites, the seedling establishment rate was higher at Linn (18%) than at Benton N (6.1%) and Benton S (3.6%). The seedling establishment rates of each species are summarized in Table S5.

291 Seedling establishment was significantly higher in supplemental seed plots (157.3 ± 19.3) than in

292 control plots (99.6 \pm 16.0) across roadside restoration sites (*F*=13.11, *p*<0.001, Fig. 2, Table S4).

293 Seedling establishment was higher in supplemental seed plots than in control plots at each

individual site; however, this difference was only significant at Linn (Fig. 2).

296 Seedling establishment differed significantly between sections of the ditch profile across

1		15
2 3 4	297	restoration sites ($F=10.32$, $p<0.001$, Table S4, Fig. 3). Seedling establishment was significantly
5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21	298	higher on the foreslopes $(196.1 \pm 25.5 \text{ seedlings m}^{-2})$ than on the bottoms $(87.9 \pm 15.3 \text{ seedlings})$
	299	m^{-2}) and backslopes (101.3 ± 19.6 seedlings m^{-2}). On the backslopes, seedling establishment was
	300	marginally higher in supplemental seed plots than in control plots ($p=0.07$; Fig. 3). Conversely,
	301	supplemental seed addition did not affect seedling establishment on the foreslopes or bottoms
	302	(Fig. 3). There was a marginally significant site \times section of ditch profile term (<i>F</i> =2.41, <i>p</i> =0.057,
	303	Table S4), which may have occurred because seedling establishment on the foreslopes and
	304	bottoms was highest at Benton N while seedling establishment on the backslopes was highest at
22 23	305	Linn (Fig. 3). Seedling establishment was higher in supplemental seed plots than in control plots
24 25 26 27 28	306	in every site \times section of ditch profile treatment combination; however, this difference was never
	307	statistically significant (Fig. 3).
29 30	308	
31 32 33	309	
34 35	310	
36 37 38	311	
39 40	312	
41 42	313	
43 44 45	314	
43 46 47 48 49 50 51 52 53 54	315	
	316	
	317	
	318	
55 56 57 58 59 60	319	

320 DISCUSSION

In this study, we tested whether the application of supplemental seed influences the success of roadside prairie restoration. To do this, we compared rates of native seed consumption (seed removal experiment) and native seedling establishment (seedling establishment experiment) between supplemental seed plots and control plots at three newly restored roadside sites. In the seed removal experiment, we found that the rate of seed loss was very low during the initial stages of these restorations and was not influenced by the supplemental seed addition. In the seedling establishment experiment however, we found that seedling establishment was approximately 37% higher in supplemental seed plots than in control plots across restoration sites. Collectively, our results suggest that the application of supplemental seed increases native seedling establishment in roadside prairie restoration and that this may be due to lower consumption of native seed during winter and spring.

Supplemental seed may have increased seedling establishment in roadside restorations by reducing consumption of native seed. Two mechanisms through which supplemental seed could reduce native seed consumption are predator satiation and predator manipulation. Predator satiation is related to seed density. At higher seed densities, granivores consume a lower proportion of available seed (e.g., Cardina et al. 1996; Edwards & Crawley 1999), thus leaving more native seeds to germinate and become established. This interpretation is consistent with the evolutionary principle of mast seeding as a defense against granivores (Janzen 1971; Kelly 1994). Predator manipulation is related to optimal diet theory. Preferential consumption of the more abundant, higher-calorie birdseed may have resulted in lower consumption of the less

Restoration Ecology

abundant, lower-calorie native seed (Janzen 1971; Kerley & Erasmus 1991; Sih & Christensen
2001). These two mechanisms are not mutually exclusive and could be operating in combination.

The effect of supplemental seed on seedling establishment was remarkably consistent in our study, suggesting that this technique may improve the success of a wide variety of roadside restoration projects. The three restoration sites used in our study differed in profile and hydrology, and were restored using different seed mixtures, seeding rates, and seeding methods. In spite of this variability, native seedling establishment was always higher in supplemental seed plots than control plots (at every site, in every section of the ditch profile, and in every site \times section of ditch profile treatment combination) although the effect was not always significant. Previous studies have shown that granivores are an important cause of seed loss in prairie restorations and significantly reduce native seedling emergence (e.g., Howe & Brown 1999; 2000; Clark & Wilson 2003; Pellish et al. 2017). Our study supports these conclusions and suggests that the application of supplemental seed is an effective technique for reducing this impact and improving the success of roadside restoration projects.

Differences in seedling establishment between sections of the ditch profile could be related to soil moisture. Seedlings on the roadside bottoms had to endure periods of standing water, which may have lead to higher mortality and lower establishment in this section. On the foreslopes and backslopes, soil moisture may have been influenced by aspect (the direction a slope faces). In the Northern hemisphere, north- and east-facing slopes are relatively wetter than south- and westfacing slopes at the same elevation. This can lead to higher establishment on north- and eastfacing slopes in roadside restorations (Bochet & García-Fayos 2004; Bochet et al. 2007). We

found mixed support for this interpretation. Seedling establishment was indeed higher on the east-facing foreslope than the west-facing backslope at Benton N (ANOVA: F = 12.503, p =0.004) and marginally higher on the east-facing foreslope than the west-facing backslope at Benton S (ANOVA: F = 3.251, p = 0.083); but seedling establishment was not higher on the north-facing backslope than the south-facing foreslope at Linn (ANOVA: F = 0.195, p = 0.703). In spite of these overall differences in seedling establishment, the influence of supplemental seed on seedling establishment did not differ between sections (non-significant treatment × section term: F = 0.58, p = 0.58, Table S4). This suggests that practitioners should apply supplemental seed evenly to all sections of the ditch profile, regardless of differences in soil moisture. In contrast to our prediction, the application of supplemental seed did not reduce native seed

consumption during the initial stages of roadside restoration. Our seed removal experimental did however highlight temporal variation in rates of seed predation. Seed predation varies temporally based on consumer presence and activity (Howe & Brown 2000; Heggenstaller et al. 2006). In our study, we detected significantly higher seed removal in the seven-day pre-planting trial, which occurred before the first frost, than the first seven days of the post-planting trial, which occurred after the first frost. These results suggest that invertebrates, which would have been present in the pre-planting trial and absent from the post-planting trial, are an important cause of seed loss in roadside restoration. The impact of invertebrate granivores on prairie restoration is poorly understood, but previous studies have shown that invertebrates are an important cause of seed loss for some prairie and weed species in the Midwestern United States (Clark & Wilson 2003; Gaines & Gratton 2010). In contrast to invertebrates, mammalian granivores may have avoided these roadside restoration sites because there was low vegetative cover in the roadsides

Restoration Ecology

restoration.

and surrounding agricultural fields (Heggenstaller et al. 2006; Baraibar et al. 2009). Rodents can be important consumers of prairie seed during winter (Westerman et al. 2008), when seed loss was not being monitored in our study. Future studies should attempt to quantify seed loss throughout the restoration process to better understand peak predation times for different granivores. This data would help practitioners determine the optimum time to apply supplemental seed. Although seed loss was low during the initial stages of these restoration, consumption of native seed was likely higher in control plots than supplemental seed plots at some point during the restoration process because of the ultimate difference in seedling establishment between treatments. Management Implications One way that supplemental seed could improve the outcome of roadside restoration projects is by reducing weed establishment. Restorations with high native establishment typically have fewer weeds (Blumenthal et al. 2003, 2005; Middleton et al. 2010; Carter & Blair 2012; Nemec et al. 2013). The establishment of weeds can delay or even prevent native seedling establishment, and ultimately reduce native richness and diversity in prairie restorations (Blumenthal et al. 2003; Martin and Wilsey 2012). High weed biomass can also increase the management costs of prairie restoration. Another way that supplemental seed could improve roadside restoration success is by reducing granivore-induced effects on community composition. Granivores can alter community composition by preferentially consuming certain species (Howe & Brown 1999). The presence of high-calorie birdseed may reduce the likelihood that native species with relatively high-calorie seeds will be preferentially consumed and thereby increase the overall richness and diversity of a

411	
412	Because seed costs are already a prohibitive aspect of prairie restoration, it is important to
413	consider the cost and benefits of supplemental seed. Using the native seed mixture (IRVM
414	Diversity Mix) and seeding rates (prairie seed = 1.174 g m^{-2} , supplemental seed = 11.74 g m^{-2}) at
415	Linn as an example, the cost of native seed was \$811 ha ⁻¹ (personal communication, Kristine
416	Nemec, University of Northern Iowa) and the cost of supplemental seed was \$129 ha ⁻¹ .
417	Therefore, supplemental seed increased the total seed cost of the restoration project by
418	approximately 16% (\$940 ha ⁻¹). Practitioners may be able to offset this additional cost by
419	reducing native seeding rates. The application of supplemental seed increased native seedling
420	establishment by 37%. If restoration practitioners could achieve the same native seedling
421	establishment with 37% fewer native seeds, it would reduce the total seed cost to \$640 ha ⁻¹
422	(prairie seed: \$511 ha ⁻¹ ; supplemental seed: \$129 ha ⁻¹): a 21% reduction in seed cost. It should be
423	noted however, that an increase or decrease in native seeding rates does not always correspond to
424	a proportional increase or decrease in native seedling establishment (Williams and Smith 2007).
425	Future research should examine different combinations of native and supplemental seeding rates
426	to determine the optimum combination from an economic perspective.
427	
428	Roadside restoration projects are an important component of restoration efforts in Iowa, U.S.A.
429	(Smith 1998; Houseal & Smith 2000) and contribute to the overall recovery of the tallgrass
430	prairie ecosystem. There are several unique challenges associated with roadside restoration
431	projects, including: slope, aspect, disturbance (e.g., gravel deposition via snowplow), and
432	environmental heterogeneity (e.g., soil moisture, light and nutrient availability, soil type). Our
433	study suggests that supplemental seed significantly increases native seedling establishment

1		
2 3 4	434	during the critical early stages of roadside restoration projects. This technique could help
5 6 7	435	practitioners overcome the challenges of roadside restoration.
7 8 9	436	
10 11 12	437	
12 13 14	438	ACKNOWLEDGEMENTS
15 16	439	We thank J. Abernathy, K. Elgersma, G. Houseal, K. Nemec, D. Williams, and J. Young for
17 18 19	440	helpful comments and discussions on the manuscript. We thank R. Roman and B. Bonar for
20 21	441	seeding and managing the roadside sites. We thank A. Andrews, J. Cubit, W. Pingel, O.
22 23 24	442	Schouten, C. Swanson, and D. Williams for assistance in the field. We thank D. Williams for
24 25 26	443	assistance with seedling identification. This work was supported by the Living Roadway Trust
27 28 20	444	Fund and the University of Northern Iowa.
29 30 31	445	
32 33	446	
34 35 36	447	
37 38	448	
39 40 41	449	
42 43	450	
44 45 46	451	
40 47 48	452	
49 50	454	
52 53	455	
54 55	456	
эр 57 58		
59 60		

457	LITERATURE CITED
458	Baraibar B, Westerman PR, Carrión E, Recasens J (2009) Effects of tillage and irrigation in
459	cereal fields on weed seed removal by seed predators. Journal of Applied Ecology
460	46:380-387
461	Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and
462	facilitates prairie restoration. Ecological Applications 13:605-615
463	Blumenthal DM, Jordan NR, Svenson EL (2005) Effects of prairie restoration on weed
464	invasions. Agriculture, Ecosystems & Environment 107:221-230
465	Bochet E, García-Fayos P (2004) Factors controlling vegetation establishment and water erosion
466	on motorway slopes in Valencia, Spain. Restoration Ecology 12:166-174
467	Bochet E, García-Fayos P, Alborch B, Tormo J (2007) Soil water availability effects on seed
468	germination account for species segregation in semiarid roadslopes. Plant and Soil
469	295:179-191
470	Brandt J, Henderson K, Uthe J (2015) Integrated Roadside Vegetation Management Technical
471	Manual. Tallgrass Prairie Center, University of Northern Iowa, Cedar Falls, Iowa, U.S.A.
472	Cardina J, Norquay HM, Stinner BR, McCartney DA (2011) Postdispersal predation of
473	velvetleaf (Abutilon theophrasti) seeds. Weed Science 44:534-539
474	Carter DL and Blair JM (2012) High richness and dense seeding enhance grassland restoration
475	establishment but have little effect on drought response. Ecological Applications
476	22:1308-1319
477	Christiansen PA, Lyons DL (1975) Roadside vegetation management. Report to the Iowa
478	Department of Transportation, Ames, Iowa, U.S.A.
479	Clark DL, Wilson MV (2003) Post-dispersal seed fates of four prairie species. American Journal

Page 23 of 38

1		25
2 3 4	480	of Botany 90:730-735
5 6	481	Corbineau F, Gay-Mathieu C, Vinel D, Come D (2002) Decrease in sunflower (Helianthus
7 8 9	482	annuus) seed viability caused by high temperature as related to energy metabolism,
10 11	483	membrane damage and lipid composition. Physiologia Plantarum 116:489-496
12 13 14	484	Dickson TL, Wilsey BJ, Busby RR, Gebhart DL (2010) Melilotus officinalis (yellow sweet
15 16	485	clover) causes large changes in community and ecosystem processes in both the presence
17 18 19	486	and absence of a cover crop. Biological Invasions 12:65-76
20 21	487	Edwards GR, Crawley MJ (1999) Rodent seed predation and seedling recruitment in mesic
22 23	488	grassland. Oecologia 118:288-296
24 25 26	489	Flynn L (1994) Iowa roadsides return to native prairies. Roads and Bridges 32:61
27 28	490	Gaines HR, Gratton C (2010) Seed predation increases with ground beetle diversity in a
29 30 21	491	Wisconsin (USA) potato agroecosystem. Agriculture, Ecosystems & Environment
32 33	492	137:329-336
34 35	493	Gerla PJ, Cornett MW, Ekstein JD, Ahlering MA (2012) Talking big: lessons learned from a
36 37 38	494	9000 hectare restoration in the northern tallgrass prairie. Sustainability 4:3066-3087
39 40	495	Grman E, Suding KN (2010) Within-year soil legacies contribute to priority effects during
41 42 42	496	establishment of California grassland plants. Restoration Ecology 18:664-670
43 44 45	497	Heggenstaller AH, Menalled FD, Liebman M, Westerman PR (2006) Seasonal patterns in post-
46 47	498	dispersal seed predation of Abutilon theophrasti and Setaria faberi in three cropping
48 49 50	499	systems. Journal of Applied Ecology 43:999-1010
50 51 52	500	Hemsath CM (2007) Quantifying granivory in a reconstructed prairie: affects of season, species,
53 54	501	seed predators, sacrificial food, and the chemical deterrent capsaicin. MS Thesis,
55 56 57 58 59 60	502	University of Northern Iowa

2		
3 4	503	Houseal G, Smith D (2000) Source-identified seed: The Iowa roadside experience. Ecological
5 6	504	Restoration 18:173-183
7 8 9	505	Howe HF, Brown JS (1999) Effects of birds and rodents on synthetic tallgrass communities.
10 11	506	Ecology 80:1776-1781
12 13	507	(2000) Early effects of rodent granivory on experimental forb communities. Ecological
14 15 16	508	Applications 10:917-924
17 18	509	Iowa Department of Transportation (2017) Integrated Roadside Vegetation Management,
19 20 21	510	https://iowadot.gov/lrtf/integrated-roadside-vegetation-management/irvm (accessed on
22 23	511	August 30 2017)
24 25	512	Janzen DH (1971) Seed predation by animals. Annual Review of Ecology and Systematics
26 27 28	513	2:465-492
29 30	514	Kelly D (1994) The evolutionary ecology of mast seeding. Trends in Ecology & Evolution
31 32 32	515	9:465-470
34 35	516	Kelly D, Harrison AL, Lee WG, Payton IJ, Wilson PR, Schauber EM (2000) Predator satiation
36 37	517	and extreme mast seeding in 11 species of Chionochloa (Poaceae). OIKOS 90:477-488
38 39 40	518	Kelly D, Sork VL (2002) Mast seeding in perennial plants: Why, how, where? Annual Review of
41 42	519	Ecology and Systematics 33:427-447
43 44 45	520	Kerley GIH, Erasmus T (1991) What do mice select for in seeds? Oecologia 86:261–267
45 46 47	521	Levey DJ, Tewksbury JJ, Cipollini ML, Carlo TA (2006) A field test of the directed deterrence
48 49	522	hypothesis in two species of wild chili. Oecologia 150:61-68
50 51 52	523	Martin LM, Wilsey BJ (2012) Assembly history alters alpha and beta diversity, exotic-native
53 54	524	proportions and functioning of restored prairie plant communities. Journal of Applied
55 56 57 58 59 60	525	Ecology 49:1436-1445

Page 25 of 38

1		23
2 3 4	526	Middleton EL, Bever JD Schultz PA (2010) The effect of restoration methods on the quality of
5 6 7	527	the restoration and resistance to invasion by exotics. Restoration Ecology 18:181-187
8 9	528	Natural Resources Conservation Service (2006) Central region seedling ID guide for native
10 11	529	prairie plants. United States Department of Agriculture, Elsberry, Missouri, U.S.A.
12 13 14	530	Natural Resources Conservation Service (2013) Web soil survey: custom soil resource report.
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 7 8 9 10 11 2 13 4 5 6 7 8 9 10 11 2 13 4 15 16 7 8 9 21 22 32 4 5 6 7 8 9 21 22 32 4 5 6 7 8 9 30 12 23 33 4 5 6 7 8 9 10 11 2 13 4 15 16 7 8 9 21 22 32 4 5 6 7 8 9 30 12 23 33 4 5 6 7 8 9 10 11 2 13 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	531	http://websoilsurvey.nrcs.usda.gov/ (accessed September 2013)
17 18	532	Nemec KT, Allen CR, Helzer CJ, Wedin DA (2013) Influence of richness and seeding density on
19 20 21	533	invasion resistance in experimental tallgrass prairie restorations. Ecological Restoration
22 23	534	31:168-185
24 25 26	535	Ngowo V, Mulungu LS, Lodal J, Makundi RH, Massawe AW, Leirs H (2005) Evaluation of
20 27 28	536	thiram and cinnamamide for protection of maize seeds against multimammate mice,
29 30	537	Mastomys natalensis, in Tanzania. Belgian Journal of Zoology 135:179-181
31 32 33	538	Nolte DL, Barnett JP (2000) A repellent to reduce mouse damage to longleaf pine seed.
34 35	539	International Biodeterioration & Biodegradation 45:169-174
36 37	540	Pellish CA, Sherrard ME, Leytem, Jackson LL (2017) Small vertebrate granivores reduce
38 39 40	541	seedling emergence in native tallgrass prairie restoration. Restoration Ecology (DOI:
41 42	542	10.1111/rec.12557)
43 44 45	543	Prairie Moon Nursery (2013) Cultural guide & pricing, <u>https://www.prairiemoon.com/home.php</u>
45 46 47	544	(accessed 30 Sep 2013)
48 49	545	Pulliam HR, Brand MR (1975) The production and utilization of seeds in plains grassland of
50 51 52	546	southeastern Arizona. Ecology 56:1158-1166
53 54	547	R Core Team (2013) R: A language and environment for statistical computing. R Foundation for
55 56 57 58 59 60	548	Statistical Computing, Vienna, Austria. <u>https://www.R-project.org/</u>

1		
2 3 4	549	Ries L, Debinski DM, Wieland ML (2001) Conservation value of roadside prairie restoration to
5 6 7	550	butterfly communities. Conservation Biology 15:401-411
7 8 9	551	Robbins C (1983) Wildlife feeding and nutrition. Academic Press, New York, New York, U.S.A.
10 11	552	Sampson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44:418-421
12 13	553	Schramm P (1990) Prairie restoration: A twenty-five year perspective on establishment and
14 15 16	554	management. Pages: 169-177 In: Smith DD, Jacobs CA (eds) Proceedings of the Twelfth
17 18	555	North American Prairie Conference, Cedar Falls, Iowa, U.S.A.
19 20 21	556	Sih A, Christensen B (2001) Optimal diet theory: when does it work, and when and why does it
22 23	557	fail? Animal Behaviour 61:379-390
24 25 26	558	Smith D (1998) Iowa prairie: original extent and loss, preservation and recovery attempts.
26 27 28	559	Journal of Iowa Academy of Sciences 105:94-108
29 30	560	Smith D, Williams D, Houseal G, Henderson K (2010) The Tallgrass Prairie Center guide to
31 32 33	561	prairie restoration in the upper Midwest. University of Iowa Press, Iowa City, Iowa,
34 35	562	U.S.A.
36 37	563	Weeks HP, Kirkpatrick CM (1976) Adaptations of white-tailed deer to naturally occurring
38 39 40	564	sodium deficiencies. Journal of Wildlife Management 40:610–625.
41 42	565	Westerman PR, Wes JS, Kropff MJ, Van Der Werf W (2003) Annual losses of weed seeds due to
43 44 45	566	predation in organic cereal fields. Journal of Applied Ecology 40:824-836
45 46 47	567	Williams D (2010) The Tallgrass Prairie Center guide to seed and seedling identification in the
48 49	568	upper Midwest. University of Iowa Press, Iowa City, Iowa, U.S.A.
50 51 52	569	Williams D, Smith DD (2007) The effects varying seeding rates of prairie grasses and forbs on
53 54	570	native plant establishment in a prairie reconstruction. Iowa Department of Transportation
55 56	571	Internal Report, Cedar Falls, Iowa, U.S.A.
57 58 59		

1		
2 3 4	572	SUPPORTING INFORMATION
5 6 7	573	Figure S1. Locations and plot layouts of the three roadside restoration sites.
7 8 9	574	Figure S2. Photo of roadside (highlighting sections) and schematic diagram of plots.
10 11	575	Table S1. Seed mixtures and seeding rates for the Linn and Benton County sites.
12 13 14	576	Table S2. General linear model: seed removal experiment (trial effect).
15 16	577	Table S3. General linear model: seed removal experiment (treatment effect).
17 18 19	578	Table S4. General linear model: seedling establishment experiment.
20 21	579	Table S5. Average number of established seedlings m ⁻² of each species at each site.
22 23	580	
24 25 26	581	
27 28	582	
29 30 31	583	
32 33	584	
34 35 36	585	
37 38	586	
39 40	587	
41 42 43	588	
44 45	589	
46 47 48	590	
49 50	591	
51 52 53	592 502	
53 54 55	501	
56 57	374	
58 59 60		

595 FIGURE CAPTIONS:

 Figure 1. Seed consumption at three roadside prairie restoration sites. Seed consumption was quantified for each plot as the average number of seeds removed from seven seeds card after seven or 14 days. We present the data as the average of all plots (± 1 SE) at all three sites. Seed consumption was significantly higher in the seven-day pre-planting trial (grey triangles) than in the first seven days of the post-planting trial. For this analysis, we only used data from control plots in the post-planting trial (grey circles) because of the potential confounding effect of supplemental seed addition. Seed consumption did not differ between supplemental seed plots (white circles) and control plots (grey circles) in the 14-day post-planting trial. Figure 2. The number of established seedlings per m^{-2} in supplemental seed plots (white bars)

and control ploys (grey bars) at three roadside restoration sites, as well as the three-site average.
Data presented are means ±1SE. Significant differences between treatments, based on Tukey
post hoc tests, are indicated with asterisks. Dashed lines represent site averages (across
treatments) and significant differences between sites are indicated with different letters.

Figure 3. The number of established seedlings per m⁻² in supplemental seed plots (white bars) and control ploys (grey bars) in each section of the ditch profile at three roadside restoration sites, as well as the three-site average. Data presented are means ± 1 SE. Significant differences between treatments, based on Tukey post hoc tests, are indicated with asterisks (° indicates a marginally significant [p < 0.10] difference). Dashed lines represent section averages (across restoration sites).

30

Figure S1. Above: County map of Iowa highlighting the location of the three restoration sites in Benton and Linn Counties. Below: Plot layout at the three restoration sites: Benton N, Benton S, and Linn.

Figure S2. Above: Photograph of a roadside restoration site, highlighting the three sections of the ditch profile. Center: Schematic diagram of one research plot in the seed card experiment. Seed cards were placed equidistant to one another (spanning all three sections of the ditch profile) along a transect located the center of the longest plot axis. A control card was placed next to one randomly selected seed card in each plot. Below: Schematic diagram of one research plot in the seedling establishment experiment. Sampling occurred in a 5 m strip located at the center of the longest plot axis, creating a 16 m buffer between the sampling area and adjacent plot on both sides. Five 0.1-m quadrats (represented by Xs) were randomly placed along a transect located at the center (by width) of each ditch section.

	Linn		Bentor	1
	g m ⁻²	seeds m ⁻²	g m ⁻²	seeds m ⁻²
Amorpha canascens	0.02	9.88	0.07	42.07
Andropogan gerardii Vitman	0.13	47.44	0.57	201.72
Asclepias incarnata L.			0.09	15.13
Asclepias tuberosa L.	0.02	2.66	0.07	11.29
Astragalus canadensis L.	0.02	10.08	0.07	42.87
Baptisia alba (L.) Vent.	0.01	0.84	0.06	3.57
Bouteloua curtipendula (Michx.) Torr.	0.13	28.47	0.57	121.03
Carex bicknellii Britton	0.00	11.68	0.01	49.64
Carex vulpinoidea Michx.			0.01	31.52
Chamaecrista fasciculata (Michx.) Greene	0.12	7.41	0.52	31.52
Dalea purpurea Vent.	0.02	12.97	0.10	55.16
Desmodium canadense (L.) DC.	0.01	1.63	0.04	6.93
Echinacea pallida Nutt.	0.02	4.50	0.10	19.12
Elymus canadensis L.	0.11	20.56	0.48	87.41
Eryngium yuccifolium Michx.	0.02	5.56	0.09	23.64
Helenium autumnale L.			0.03	136.58
Heliopsis helianthoides (L.) Sweet	0.03	7.01	0.13	29.79
Lespedeza capitata Michx.	0.01	3.95	0.06	16.81
Liatris aspera Michx.	0.02	13.84	0.10	58.83
Liatris pycnostachya Michx.	0.03	11.42	0.13	48.54
Monarda fistulosa L.	0.02	43.24	0.07	183.86
<i>Oligoneuron rigidum</i> (L.) Small	0.01	12.16	0.04	51.69
Panicum virgatum L.			0.48	235.34
Penstemon grandiflorus Nutt.	0.01	5.19	0.04	22.06
Ratibida pinnata (Vent.) Barnhart	0.02	25.95	0.10	110.31
Rudbeckia hirta L.	0.02	56.83	0.07	241.64
<i>Ruellia humilis</i> Nutt.	0.01	1.54	0.04	6.56
Scirpus atrovirens Willd.			0.01	144.99
Silphium lacinatum L.	0.01	0.20	0.04	0.83
Sorghastrum nutans (L.) Nash	0.13	56.93	0.57	242.06
Sporobolus compositus (Poir.) Merr.	0.13	132.84	0.57	564.81
<i>Symphyotrichum novae-angliae</i> (L.) G.L. Nesom	0.01	19.57	0.04	83.21
Tradescantia ohiensis Raf.	0.03	7.91	0.12	33.62
Verbena stricta Vent.	0.01	8.30	0.04	35.30
Zizia aurea (L.) W.D.J. Koch	0.02	5.98	0.07	25.42
. /	1 17	576 54	5.61	3014 88
	1.1/	010.01	0.01	2011.00

Table S1. Seed mixtures for the Linn and Benton County sites. Species are listed alphabetically and nomenclature is based on USDA plants database (USDA-NRCS 2015).

Restoration Ecology

Table S2. General linear model comparing seed loss between the seven-day pre-planting trial and the first seven days of the post-planting trial. We only used data from the control plots of the post-planting trial because of the potential confounding effect of supplemental seed addition. Trial (pre-planting vs. post-planting) and site were fixed factors in the model. The treatment × site interaction term was removed from the model because it was not significant. Removal of this term did not alter the significance of any factor. Data presented are degrees of freedom (*df*), sum of squares (SS), mean squares (MS), *F*-statistics (*F*), and *P*-values (*p*). Significant terms are

indicated in bold.

Factor	df	SS	MS	F	р
trial	1	378.20	378.20	26.15	<0.001
site	2	6.81	3.41	0.24	0.792
residuals	23	332.64	14.46		

Table S3. General linear model comparing seed loss between treatments (control plots vs. supplemental seed plots) and sites in the 14-day post-planting trial. Treatment and site were fixed factors in the model. The treatment \times site interaction term was removed from the model because it was not significant. Removal of this term did not alter the significance of any factor. Data presented are degrees of freedom (*df*), sum of squares (SS), mean squares (MS), *F*-statistics (*F*), and *P*-values (*p*). Significant terms are indicated in bold.

Factor	df	SS	MS	F	р
treatment	1	3.28	3.28	1.35	0.256
site	2	18.55	9.28	3.82	0.036
residuals	25	60.65	2.43		

Table S4. General linear model comparing the number of established seedlings between roadside restoration sites (site), treatments (control plots vs. supplemental seed plots), sections of the ditch profile (section) and their interactions. Site, treatment, and section were all fixed factors in the model. Data were cube-root transformed to improve normality. Data presented are degrees of freedom (*df*), sum of squares (SS), mean squares (MS), *F*-statistics (*F*), and *P*-values (*p*). Significant terms are indicated in bold.

Factor	df	SS	MS	F	р
site	2	6.809	3.405	3.52	0.035
treatment	1	12.676	12.676	13.11	<0.001
section	2	19.953	9.977	10.32	<0.001
site × treatment	2	2.842	1.421	1.47	0.24
treatment × section	2	1.112	0.556	0.58	0.58
site × section	4	9.323	2.331	2.41	0.057
site \times treatment \times section	4	1.202	0.301	0.31	0.87
residuals	66	63.821	0.967		
					24

Table S5: Average number of established seedlings per m^2 of each species at each roadside restoration site and at all three sites combined (overall). Data presented are means and standard errors (in parentheses). Species are ordered from most to least common across sites.

	Overall	Linn	Benton N	Benton S
Rudbeckia hirta	18.18 (2.70)	27.67 (4.45)	24.13 (4.48)	10.71 (1.96)
Echinacea pallida	11.79 (1.30)	4.67 (0.87)	14.50 (2.83)	13.29 (1.71)
Sorghastrum nutans	9.79 (2.04)	4.44 (0.70)	21.17 (6.11)	5.57 (1.40)
Verbena stricta	9.52 (1.31)	4.33 (0.59)	13.25 (3.02)	9.62 (1.80)
Heliopsis helianthoides	7.79 (0.79)	4.22 (0.69)	10.50 (1.89)	7.76 (0.87)
Penstemon grandiflorus	7.71 (1.16)	1.33 (0.41)	10.75 (2.54)	8.71 (1.62)
Ratibida pinnata	7.00 (1.29)	13.22 (1.53)	16.25 (2.97)	6.67 (1.07)
Andropogan gerardii	6.79 (1.22)	3.89 (0.78)	13.42 (3.07)	4.24 (1.27)
Eryngium yuccifolium	6.36 (0.83)	1.22 (0.20)	9.00 (2.27)	7.05 (0.85)
Bouteloua curtipendula 🥂 📿	6.24 (1.01)	4.67 (0.79)	7.58 (1.94)	6.14 (1.54)
Zizia aurea	5.05 (0.61)	5.67 (0.59)	4.58 (1.14)	5.05 (0.88)
Ruellia humilis	3.29 (0.46)	0.44 (0.12)	4.75 (1.15)	3.67 (0.56)
Sporobolus compositus	3.02 (0.87)	8.44 (1.69)	1.83 (0.60)	1.38 (0.46)
Carex sp.	2.86 (1.18)	3.00 (0.49)	7.50 (3.95)	0.14 (0.08)
Monarda fistulosa	2.57 (0.47)	1.78 (0.40)	3.58 (1.17)	2.33 (0.55)
Tradescantia ohiensis	2.38 (0.41)	0.00 (0.00)	1.58 (0.40)	3.86 (0.71)
Desmodium canadense	2.24 (0.32)	1.22 (0.19)	3.17 (0.81)	2.14 (0.38)
Elymus canadensis	2.24 (0.47)	4.89 (0.84)	1.50 (0.35)	1.52 (0.42)
Dalea purpurea	2.14 (0.43)	0.89 (0.20)	4.92 (1.19)	1.10 (0.34)
Liatris sp.	1.60 (0.30)	1.00 (0.29)	1.58 (0.71)	1.86 (0.36)
Lespedeza capitata	1.50 (0.27)	1.33 (0.21)	2.33 (0.72)	1.10 (0.28)
Asclepias incarnata	1.10 (0.22)		1.92 (0.58)	1.10 (0.24)
Oligoneuron rigidum	0.76 (0.15)	1.00 (0.13)	0.92 (0.38)	0.57 (0.18)
Asclepias tuberosa	0.69 (0.18)	0.89 (0.15)	0.75 (0.43)	0.57 (0.22)
Chamaecrista fasciculata	0.67 (0.16)	2.00 (0.21)	0.67 (0.31)	0.10 (0.07)
Astragalus canadensis	0.52 (0.14)	0.67 (0.15)	0.92 (0.38)	0.24 (0.10)
Baptisia alba	0.31 (0.10)	0.00 (0.00)	0.58 (0.28)	0.29 (0.13)
Amorpha canascens	0.21 (0.11)	0.44 (0.21)	0.17 (0.12)	0.14 (0.08)
Panicum virgatum	0.14 (0.08)		0.25 (0.14)	0.14 (0.14)
Helenium autumnale	0.10 (0.05)		0.17 (0.12)	0.10 (0.07)
Symphyotrichum novae-angliae	0.05 (0.03)	0.11 (0.05)	0.00 (0.00)	0.05 (0.05)
Scirpus atrovirens	0.02 (0.02)		0.00 (0.00)	0.05 (0.05)
Silphium lacinatum	0.02 (0.02)	0.11 (0.05)	0.00 (0.00)	0.00 (0.00)